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ABSTRACT

Privacy-preserving record linkage (PPRL) facilitates the matching

of records that correspond to the same real-world entities across

different databases while preserving the privacy of the individuals

in these databases. A Bloom filter (BF) is a space efficient proba-

bilistic data structure that is becoming popular in PPRL as an effi-

cient privacy technique to encode sensitive information in records

while still enabling approximate similarity computations between

attribute values. However, BF encoding is susceptible to privacy

attacks which can re-identify the values that are being encoded. In

this paper we propose two novel techniques that can be applied on

BF encoding to improve privacy against attacks. Our techniques use

neighbouring bits in a BF to generate new bit values. An empirical

study on large real databases shows that our techniques provide

high security against privacy attacks, and achieve better similar-

ity computation accuracy and linkage quality compared to other

privacy improvements that can be applied on BF encoding.

CCS CONCEPTS

• Security and privacy → Data anonymization and sanitiza-

tion; • Information systems→ Entity resolution.
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1 INTRODUCTION

In today’s Big Data era, organisations collect vast quantities of

data every day [3]. To improve the quality of decision making,

organisations increasingly require to identify matching records

from different databases that refer to the same real-world entity [1,

13]. Generally, attributes, such as name, address, or date of birth,

are used for the purpose of matching records [14].
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Figure 1: An example Dice coefficient similarity (𝑠𝑖𝑚𝐷 ) calculation

of the two FirstNames ‘peter’ and ‘pete’ encoded in BFs. The italic

bit shows a hash collision.

Even though these attributes allow accurate linking of records,

due to growing privacy concerns organisations often do not want

their sensitive personal data to be revealed to any other party [13].

Privacy-preserving record linkage (PPRL) aims at linking of data-

bases without the need of any sensitive data to be shared between

the parties involved in the linkage. This requires data in sensitive

databases to be encoded or encrypted before they can be linked [14].

Encoding or encryption methods used in PPRL must facilitate

approximate similarity calculations due to data quality issues [14].

The PPRL techniques that have been proposed so far either rely

on expensive secure computations to achieve strong privacy guar-

antees, or use efficient perturbation techniques [13, 14]. However,

perturbation techniques can be vulnerable to privacy attacks that

can re-identify sensitive values in an encoded database [4].

Bloom filter (BF) encoding is currently the most popular privacy

technique employed in different practical applications to link sensi-

tive databases, and has almost become a standard for PPRL [9, 14].

In PPRL, commonly character q-grams extracted from attribute val-

ues are hashed into BFs using 𝑘 hash functions that set certain bit

positions to 1. Similarities are then calculated on BFs based on the

number of 1-bits they have. Figure 1 shows the encoding of bigrams

(𝑞 = 2) of two string values into 14 bits long BFs using 𝑘 = 2 hash

functions, and their Dice coefficient similarity calculation [3].

However, BF encoding can be susceptible to privacy attacks [6,

13]. Sensitive values that occur frequently in an encoded data-

base can lead to frequent bit patterns in BFs that can be identified,

and even individual frequent q-grams can be found using pattern

mining based privacy attacks [15]. This potentially allows the re-

identification of values encoded in BFs [4, 6].

Contribution:We propose two novel techniques that aim to harden

BFs in order to make them more resilient to privacy attacks. In the

proposed techniques, we apply (1) sliding windows, and (2) re-

sampling based methods to select certain bits in the original BFs

and apply bit-wise exclusive OR (XOR) upon these selected bits to

generate new bit values to be used in the hardened BFs. We evaluate

the performance of these techniques by comparing them to existing

hardening techniques on BFs in terms of scalability, linkage quality,

and privacy. To the best of our knowledge, no such evaluation of

hardening techniques has so far been published.
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2 RELATEDWORK

The vulnerabilities of BFs in PPRL [4, 7, 15] have recently been

addressed by the development of hardening techniques [12]. Hard-

ening aims to modify the bit patterns in BFs to reduce the frequency

information required by privacy attacks [11]. In this section we

describe existing hardening techniques that can be applied on BFs.

Balancing: This technique changes any non-uniform Hamming

weight distribution of BFs into (near) uniform distribution to avoid

any frequency analysis on BFs [11]. Balanced BFs can be constructed

by concatenating a BF of length 𝑙 with its negated copy (all bits

flipped) and then permuting the 2 × 𝑙 bits. Balanced BFs potentially

make the identification of certain frequent bit patternsmore difficult.

However, balancing BFs requires more space than basic BFs and

the additional set bits can always lead to more false matches.

XOR Folding: Schnell and Borgs [12] proposed a BF hardening

technique that uses vector folding [2] combined with a bit-wise

XOR operation. A BF b of length 𝑙 is first divided into two halves b1
and b2 each of length 𝑙/2, where b1 [𝑖] = b[𝑖] and b2 [𝑖] = b[𝑖 + 𝑙/2],
with 0 ≤ 𝑖 < 𝑙/2. Then, the two BFs b1 and b2 are combined into a

new hardened BF b𝐻 of length 𝑙/2 by applying the bit-wise XOR

operation ⊕ on each bit 0 ≤ 𝑖 < 𝑙/2, where b𝐻 [𝑖] = b1 [𝑖] ⊕b2 [𝑖]. An
XOR operation applied on a bit position ensures it is not possible to

recover the original two input bits values, which improves privacy.

Salting: Salting is a hardening technique proposed by Niedermeyer

et al. [7] to avoid privacy attacks on BFs by adding an extra (string)

value to each q-gram before it is hashed, where these string values

are very specific for an individual and do not change over time.

Examples of salting values can be the year of birth or the birth

place of an individual. So instead of hashing q-grams into BFs,

salted q-grams are hashed. Thus, with salting, most q-grams that

are frequent will become much less frequent once concatenated

with a salting value which potentially improve privacy.

Rule 90: Rule 90 is a cellular automata [16] that is based on the

bit-wise XOR function of two bits in a bit array used to generate

a new bit array. Schnell and Borgs [10] first proposed to use Rule

90 as a hardening technique for BF encoding because it is non

reversible. Each bit position 𝑝 , with 0 ≤ 𝑝 ≤ 𝑙 − 1, in a BF of length

𝑙 is modified by XORing the bits at positions (𝑝 − 1) 𝑚𝑜𝑑 𝑙 and

(𝑝 + 1) 𝑚𝑜𝑑 𝑙 , where the modulo (𝑚𝑜𝑑) function is used to ‘wrap

around’ the input bits of the first and last bit in a BF.

Markov chaining: This technique [10] avoids frequency attacks

on q-grams encoded into BFs by adding extra q-grams randomly

based on their frequent co-occurrences. For each unique q-gram 𝑞,

𝑐 other q-grams are randomly selected to be encoded with 𝑞 based

on their probability to occur after 𝑞, where 𝑐 is the chain length
parameter that is used in the hardening technique. However, larger

values of 𝑐 will result in more distorted frequency distributions and

thus improve privacy, but will reduce linkage quality.

Bloom and Flip (BLIP): Schnell and Borgs [12] proposed this

approach which flips bit values at certain positions in a BF accord-

ing to a differential privacy mechanism [5]. Here, the bit value at

position 𝑝 in a BF b is flipped randomly to either 1 or 0 with a flip

probability 𝑓 . However, depending upon the percentages of 1-bits

in BFs, BLIP can result in an increase or decrease of the similarities

calculated between hardened BFs.
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Figure 2:Anexample of thewindowing based hardening technique

with a window size 𝑤 = 4. ⊕ represents bit-wise XOR operation.

Re-hashing: This technique [8] uses several bits from a BF b
to generate a new set of bits. The idea is to slide a window of

width𝑤 bits over b, where the window is moved 𝑠 bits (step size)

forward in each step. The bits in the window are used to calculate an

integer value which is then used as the seed for a pseudo random

number generator (PRNG). A sequence of 𝑘𝑟𝑒 random numbers

[𝑝1, . . . , 𝑝𝑘𝑟𝑒 ], each in the range 0 ≤ 𝑝𝑖 ≤ 𝑙 − 1, where 𝑙 is the

length of the hardened BF b𝐻 , is then generated by the PRNG.

These numbers 𝑝𝑖 will be used as the bit positions to set to 1 in b𝐻 .

3 OUR NOVEL HARDENING TECHNIQUES

Aswe experimentally show in Sect. 4, existing hardening techniques

can potentially reduce linkage quality while improving privacy. To

this end, we propose two techniques that use bits in the original BF

to generate a hardened BF using XORing. XORing of bits ensures it

is not possible to recover the original bit values. We next describe

our two hardening techniques in more details.

3.1 Windowing based XORing (WXOR)

This method focuses on applying a sliding window approach to

compute hardened BFs. In this approach two sliding windows𝑊1

and𝑊2 of a certain window size𝑤 are iteratively moved along the

original BF b of length 𝑙 . In each iteration the window𝑊1 starts at

position 𝑝 , with 0 ≤ 𝑝 < 𝑙 −𝑤 , and the window𝑊2 is positioned

at bit position (𝑝 + 1) 𝑚𝑜𝑑 𝑙 , where the modulo (𝑚𝑜𝑑) function is

used to ‘wrap around’ the last position of the second window𝑊2.

In a given iteration 𝑖 a bit pattern from each window is extracted.

These two bit patterns are then XORed together. The bit values in

the computed XORed bit pattern are used to set the corresponding

positions in the BF b according to the window𝑊1. After the XORing

process the two windows𝑊1 and𝑊2 are moved by one bit position

(step). We repeat these steps until we processed the whole original

BF. This updated BF b is then used as the hardened BF b𝐻 . Fig. 2
shows an example of this hardening technique.

In this hardening technique each window is moved (𝑙 −𝑤 + 1)
iterations and each bit position in the hardened BF b𝐻 is updated𝑤

times. If the window size𝑤 is small then longer runtime is required

to apply the hardening since more iterations are required to process

the original BF. However, as we also show in Sect. 4, a small 𝑤

potentially allows more accurate similarity calculations upon the

hardened BF since bit positions are updated according to the XORed

value of a smaller number neighbouring bits. On the other hand, a

large window size𝑤 will make the hardening process more efficient,

but will be less accurate due to the large number of bits that will



Table 1: The average number of unique values in the different at-

tributes of the different data set pairs used in the evaluation.

Data set Number of First Last Birth Street City Zip

name records Name Name Year address code

CLN-500K 500,000 40,405 77,160 101 469,139 756 838

CLN-100K 100,000 14,699 26,544 88 97,193 706 792

DRT-100K 100,000 14,870 26,796 87 96,289 699 784

Eurostat 24,978 2,169 1,029 104 3,022 – 605

be changed. Furthermore, if this hardening technique is to be used

in a linkage protocol, the database owners only need to agree on

the window size𝑤 that will be used in the hardening process.

3.2 Re-sampling based XORing

Our second hardening technique uses re-sampling of bit positions

from the original BF b and applies XORing upon these bits. In this

approach we use a random sampling process with replacement

where we apply the sampling step 𝑙 times to generate a hardened

BF of length 𝑙 . In each sampling step 𝑘 , with 0 ≤ 𝑘 ≤ 𝑙 − 1, we

randomly select two bit positions 𝑝𝑖 and 𝑝 𝑗 from the original BF

b, with 0 ≤ 𝑖, 𝑗 ≤ 𝑙 − 1. Next, the bit values b[𝑝𝑖 ] and b[𝑝 𝑗 ] are
XORed (⊕) and the resulting bit value is used to set the position 𝑘

in the hardened BF b𝐻 , where b𝐻 [𝑘] = b[𝑝𝑖 ] ⊕ b[𝑝 𝑗 ].
In this approach, random sampling with replacement ensures the

bit positions are selected with equal probability and the selection of

two bit positions are independent. However, in this technique if the

original BFs are hashed with more q-grams, i.e. contain more 1-bits,

then the hardened BF will have more 0-bits due to XORing. This

can potentially lower similarities thus leading to false negatives.

In a PPRL protocol, the only parameter that needs to be agreed

by the database owners for applying this hardening technique is a

random seed value to ensure they apply the same random sampling

of bit positions. We next compare our proposed techniques with

the existing hardening techniques reviewed in Sect. 2.

4 EXPERIMENTAL EVALUATION

We used four data set pairs for experiments as summarised in

Table 1. The first three data set pairs are based on the real North

Carolina Voter Registration database (NCVR) (see: http://dl.ncsbe.

gov/), where we extracted records from the April 2018 and October

2019 NCVR snapshots. CLN-500K and CLN-100K are ‘clean’ data

sets that have at most two attribute values that are different for a

given voter across the two NCVR snapshots. In the DRT-100K (dirty)

data set each pair of records of the same voter has between one

and three attribute values that are different between the two NCVR

snapshots. The last data set pair, Eurostat, is a synthetic European

census database (available at: https://ec.europa.eu/eurostat/cros/

content/job-training_en) which is generated to represent the real

observations of the decennial census.

A unique record identifier in these data sets allows us to identify

true matching records that refer to the same entity across two data

sets. The first three data set pairs in Table 1 have 100% overlap be-

tween entities while Eurostat has 97% overlap between entities with

62% of entities having errors and missing values in their records.

To evaluate linkage quality we simulated a three-party PPRL

protocol [14] where we used Soundex [3] based phonetic blocking

Table 2: Average runtimes for different numbers of attributes en-

coded using the CLN-500K data sets. We show total encoding plus

hardening runtimes in seconds, and the overhead of hardening tech-

niques in percentages compared to no hardening.

Hardening technique

Runtime (sec)

One attribute Two attributes Four attributes

No hardening 121 341 832

Balancing 384 (217%) 812 (138%) 1,325 (59.2%)

XOR folding 134 (10.7%) 353 (3.5%) 844 (1.4%)

Salting 125 (3.3%) 593 (73.9%) 984 (18.3%)

Rule 90 392 (224%) 878 (157%) 1,475 (77.2%)

Markov chain 782 (546%) 1,595 (368%) 3,527 (324%)

BLIP 263 (117%) 593 (73.9%) 984 (18.3%)

Re-hashing 412 (240%) 906 (165%) 1,526 (83.4%)

WXOR 398 (228%) 880 (158%) 1,483 (78.3%)

Re-sampling 148 (22.3%) 384 (12.6%) 862 (3.6%)

on FirstName and LastName attributes. Following [9], in the clas-

sification step we used Dice coefficient with a threshold 𝑡 ranging

from 0.1 to 1.0, in 0.1 steps, and assessed precision and recall [3].

To evaluate the privacy we used the cryptanalysis attack by

Christen et al. [4]. This attack aligns frequent BFs and plain-text

values in a public database to allow re-identification of the most

frequent values encoded in these BFs. We conducted this attack

assuming one file in a data set pair is the encoded BF database

while the other represents the public database. We evaluate the

re-identification accuracy in terms of the percentages of (1) correct

guesses with 1-to-1 matching (1-1 corr), (2) correct guesses with

1-to-many (1-m corr) matching, (3) wrong guesses (Wrong), and (4)

no guesses (No), where these four percentages sum to 100.

As in earlier PPRLwork [14], we set the BF parameters as 𝑙 =1000

bits, 𝑘 = 30, 𝑞 = 2, and used cryptographic long-term key [9] as

BF encoding. We used BirthYear values for salting and set the

chain length 𝑐 = 1 in Markov chain based hardening. Following [12]

and [8], we set flip probability 𝑓 = 0.05 in BLIP, and 8, 16, 3 for

𝑤 , 𝑠 , and 𝑘𝑟𝑒 , respectively, in re-hashing. For our window based

hardening (WXOR) technique we set𝑤 to [1, 5, 10, 20, 50, 100].

We used Python (version 2.7) for implementations. We ran all

experiments on a server with 64-bit Intel Xeon (2.4 GHz) CPUs, 128

GBytes of memory and running Ubuntu 14.04. The programs and

data sets are available from the authors.

Results and Discussion Table 2 shows runtime results for BF

encoding with the different hardening techniques applied. As can

be seen, for the hardening techniques that work on the actual BFs

(such as balancing, XOR folding, Rule 90, and BLIP), including our

proposed techniques, the relative overhead becomes less as more

attributes, and therefore more q-grams, are being hashed because

these techniques are independent of the number of q-grams that

are hashed. Markov chaining requires significantly longer runtimes

because the total number of q-grams that are being encoded is

increased through the selection of extra q-grams.

Figure 3 shows q-gram based similarities versus corresponding

similarities on our hardening techniques. As can be seen, theWXOR

and re-samping based hardened BFs allow accurate similarity cal-

culations even when BFs are encoded with increasing numbers of

attributes. However, we noted that in WXOR a larger window size

(𝑤 > 50) can decrease the corresponding BF similarities of q-gram

similarities (> 0.7) by 20% (plots not shown due to limited space).

http://dl.ncsbe.gov/
http://dl.ncsbe.gov/


Table 3: Area under the curve (AUC) values for different hardening techniques with different data sets and different numbers of attributes.

Data set Number of attributes No hardening Balancing XOR folding Salting Rule 90 Markov chain BLIP Re-hashing WXOR Re-sampling

CLN-100K

3 0.876 0.851 0.852 0.872 0.856 0.525 0.839 0.856 0.873 0.872

4 0.957 0.961 0.967 0.957 0.973 0.683 0.937 0.878 0.973 0.971

DRT-100K

3 0.743 0.731 0.732 0.706 0.741 0.488 0.714 0.707 0.743 0.740

4 0.831 0.873 0.876 0.830 0.882 0.472 0.785 0.711 0.886 0.884

Eurostat

3 0.987 0.984 0.983 0.982 0.983 0.707 0.975 0.981 0.985 0.985

4 0.988 0.988 0.987 0.989 0.987 0.511 0.986 0.987 0.989 0.989

Table 4: Average percentages of 1-1 corr, 1-m corr, Wrong, and No guesses, shown respectively, with different numbers of attributes.

Number of

Attributes

No hardening Balancing XOR folding Salting Rule 90 Markov chain BLIP Re-hashing WXOR Re-sampling

1 5 / 8 / 11 / 76 3 / 2 / 6 / 89 2 / 1 / 6 / 91 2 / 2 / 4 / 92 2 / 8 / 12 / 78 4 / 12 / 6 / 78 2 / 12 / 2 / 84 3 / 11 / 27 / 59 1 / 1 / 3 / 95 1 / 2 / 4 / 93

2 1 / 8 / 2 / 89 0 / 8 / 4 / 88 0 / 3 / 8 / 89 0 / 2 / 2 / 96 0 / 3 / 8 / 89 0 / 12 / 2 / 86 0 / 12 / 4 / 84 0 / 8 / 4 / 88 0 / 1 / 1 / 98 0 / 1 / 2 / 97
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Figure 3: Similarity plots of (left) WXOR (𝑤 = 1) and (right) re-

sampling hardening techniques for the CLN-100K data set.

Table 3 shows linkage quality results in terms of area under

the curve value (AUC) calculated based on precision and recall

for different threshold values. We noted for different numbers of

attributes our hardening techniques resulted in higher AUC values

compared to other hardening techniques. Markov hardening shows

the lowest AUC values due to the addition of extra q-grams which

potentially increases BF similarities leading to many false positives.

Finally, Table 4 shows average re-identification results for differ-

ent hardening techniques. As can be seen, our proposed hardening

techniques resulted in the lowest correct 1-1 re-identifications even

when BFs are encoded with one attribute value. This indicates the

XORing of bit values will likely distort the frequency distribution of

BFs making a frequency based cryptanalysis attack more difficult.

In the attack for three and four attributes all hardening techniques

resulted in 100% No re-identification guesses.

5 CONCLUSION AND FUTURE WORK

We have introduced two novel hardening techniques for Bloom

filter (BF) encoding based privacy-preserving record linkage (PPRL).

Our techniques used two different bit XORing methods to harden

BFs. Our experimental evaluation showed that our proposed tech-

niques can outperform existing hardening techniques in terms of

linkage quality and privacy. As future work, we aim to theoretically

analyse our techniques and to assess privacy with other privacy

attacks. Extending our proposed hardening techniques to other

PPRL encoding techniques is another future research avenue.
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